Alterations in functional thalamocortical connectivity following neonatal whisker trimming with adult regrowth.
نویسندگان
چکیده
Neonatal whisker trimming followed by adult whisker regrowth leads to higher responsiveness and altered receptive field properties of cortical neurons in corresponding layer 4 barrels. Studies of functional thalamocortical (TC) connectivity in normally reared adult rats have provided insights into how experience-dependent TC synaptic plasticity could impact the establishment of feedforward excitatory and inhibitory receptive fields. The present study employed cross-correlation analyses to investigate lasting effects of neonatal whisker trimming on functional connections between simultaneously recorded thalamic neurons and regular-spike (RS), presumed excitatory, and fast-spike (FS), presumed inhibitory, barrel neurons. We find that, as reported previously, RS and FS cells in whisker-trimmed animals fire more during the earliest phase of their whisker-evoked responses, corresponding to the arrival of TC inputs, despite a lack of change or even a slight decrease in the firing of thalamic cells that contact them. Functional connections from thalamus to cortex are stronger. The probability of finding TC-RS connections was twofold greater in trimmed animals and similar to the frequency of TC-FS connections in control and trimmed animals, the latter being unaffected by whisker trimming. Unlike control cases, trimmed RS units are more likely to receive inputs from TC units (TCUs) and have mismatched angular tuning and even weakly responsive TCUs make strong functional connections on them. Results indicate that developmentally appropriate tactile experience early in life promotes the differential thalamic engagement of excitatory and inhibitory cortical neurons that underlies normal barrel function.
منابع مشابه
Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice
Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD). While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neur...
متن کاملChanges in mouse barrel synapses consequent to sensory deprivation from birth.
Neonatal sensory deprivation induced by whisker trimming affects significantly the functional organization of receptive fields in adult barrel cortex. In this study, the effects of deprivation on thalamocortical synapses and on asymmetrical and symmetrical synapses not of thalamic origin were examined. Thalamocortical synapses were labeled by lesion-induced degeneration in adult (postnatal day ...
متن کاملLayer- and cell-type-specific effects of neonatal whisker-trimming in adult rat barrel cortex.
Tactile deprivation in rats produced by whisker-trimming early in life leads to abnormally robust responses of excitatory neurons in layer 4 of primary somatosensory cortex when the re-grown whiskers are stimulated. Present findings from fast-spike neurons indicate that presumed inhibitory cells fire less robustly under the same conditions. These contrasting effects may reflect altered patterns...
متن کاملThe impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex.
Dendritic protrusions (spines and filopodia) are structural indicators of synapses that have been linked to neuronal learning and memory through their morphological alterations induced by development and experienced-dependent activities. Although previous studies have demonstrated that depriving sensory experience leads to structural changes in neocortical organization, the more subtle effects ...
متن کاملExperience-Dependent Rewiring of Specific Inhibitory Connections in Adult Neocortex
Although neocortical connectivity is remarkably stereotyped, the abundance of some wiring motifs varies greatly between cortical areas. To examine if regional wiring differences represent functional adaptations, we have used optogenetic raster stimulation to map the laminar distribution of GABAergic interneurons providing inhibition to pyramidal cells in layer 2/3 (L2/3) of adult mouse barrel c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 114 3 شماره
صفحات -
تاریخ انتشار 2015